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Rate of Adsorption of Uranium from Seawater with a 
Calix[G]arene Adsorbent 

TAKA0 AIHARA, AKIRA GOTO, TOKIHIRO KAGO, 
KATSUKI KUSAKABE, and SHIGEHARU MOROOKA* 
DEPARTMENT OF CHEMICAL SCIENCE AND TECHNOLOGY 
KYUSHU UNIVERSITY 
FUKUOKA 812, JAPAN 

Abstract 
The rate of complex formation betwecn calix[6]arcne-p-hexasulfonate and uranyl 

ion is studied over a wide range of carbonate ion concentrations. The presence of 
carbonate ion decreases the complexation rate. The distribution of various uranyl 
species is calculated from a set of mass balances of participating ions with their 
stability constants. U02(C03):- has the highest concentration, followed by 
U02(OH)i and UO,(CO,)I-. Other uranyl species are negligible. The complexation 
rate is proportional to the 0.27-1.0 power of the total concentration of uranyl 
species other than UO,(CO,):-. This implies that the rate-determining step of 
the complexation is the reaction between calix[6]arene-p-hexasulfonate and 
UO2(0H), or UO,(CO,)<-. 
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INTRODUCTION 
The recovery of uranium from seawater has attracted a great deal of 

attention from the viewpoint of energy strategy. The main difficulty in the 
recovery process arises from the low concentration (-3 ppb) of uranium 
while other metal ions are abundantly present. Thus, the development of 
selective adsorbents as well as of an efficient contactor with seawater is 
essential for the economic recovery of uranium (1-3).  Amidoxime-related 
adsorbents achieve a certain adsorption rate, but the performances re- 
ported in the literature are still unsatisfactory ( 4 ,  5 ) .  Novel adsorbents 
having a high adsorption rate are needed to realize commercial plant pro- 
duction. 
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1656 AlHARA ET AL. 

Since UO$+ complexes generally adopt a pseudoplanar penta- or hexa- 
coordinate structure, a macrocyclic ligand with a nearly coplanar arrange- 
ment of either five or six donating groups is expected to be especially 
selective. Shinkai et al. ( 6 )  found that calix[6]arene-p-hexasulfonate de- 
rivatives have a remarkably high stability constant ( Kuranyl = 10'8.4-19.2 mol/ 
L) and a good selectivity factor (KuranyllKMvl"+ = to the uranyl ion. 
This is attributed to the existence of a preorganized hexacoordination ge- 
ometry by the skeleton of calix[6]arene (7). As reported for macrocyclic 
tris(dithi0carbamate) (8, 9 )  and crown ethers (ZO), however, the overall 
adsorption rate may be controlled by the complexation rate rather than by 
the stability, although information on the reaction rate of calixarenes is 
insufficient (11). 

In the present study, the complexation rate of calix[6]arene-p-hexasul- 
fonate is evaluated in the presence of the carbonate ion. The uranyl species 
in the solution are estimated from a set of mass-balance equations and 
stability constants of the chemical species concerned. 

EXPERIMENTAL 
Calix[6]arene-p-hexasulfonate (R = H), illustrated in Fig. 1, was syn- 

thesized according to the method by Shinkai et al. ( 1 2 ) .  Calix[6]arene 
debutylated by treatment with AIC13 in toluene was mixed with concen- 
trated H2S04, and the solution was kept at 35-40°C. The mixture was then 
poured into ice water, and the precipitate was recovered by filtration. It 
was washed with a small amount of 50% H,SO, and then dissolved in water 
at 60°C. After treatment with activated charcoal, a white precipitate was 
obtained from the filtrate by a salting-out method with NaCI; yield 72%. 
Found: C, 39.6; H, 2.3%. Calculated for (C7HS04SNa)h: C ,  40.4; H, 2.4%. 
The NMR and IR spectra were in agreement with those of Shinkai et al. 

Uranyl tricarbonate, U02(C03)!-, was prepared from a potassium salt. 
The purity determined by ICP spectroscopy was 97%. The rest was mainly 
K2C03. The complexation rate was measured at 25°C in a rectangular cell 
of 4 mL volume fixed in a spectrophotometer. The pH of the uranyl solution 
was adjusted to 10.3 with carbonate buffer, and the ionic strength was 
adjusted with potassium chloride. About 3 mL of the solution was precisely 
measured and placed in the cell, and vigorously stirred. The complexation 
was started when a solution of calix[6]arene-p-hexasulfonate was injected 
into the cell. The concentration of total uranium in the cell was in the 
range of 8 x lo-, to 1 x lo-' mol/L, while the calix[6]arene was fixed 
at 1.36 x to 3 x 
10-I mol/L. 

(1.2). 

mollL. The total carbonate ranged from 4 x 
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FIG. 1. Synthesis of calix[b]arene-p-hexasulfonate (R = H).  

Addition of calix[6]arene-p-sulfonate to the uranyl solution increased 
the UV and visible absorption. The absorption maximum observed at 265 
nm was overlapped with the absorption of the calixarene. The absorption 
at 449 nm was monitored as reported by Shinkai et al. (6). The molar 
absorptivity of uranyl-calix[6]arene-p-hexasulfonate complex and uranyl 
tricarbonate was determined prior to the measurement. 

URANYL IONS IN SOLUTION 
To calculate the chemical forms in the solution, mass-balance equations 

were written for each constituent used in the present study (listed in Table 
1). DjogiC et al. (13) ,  Tamon et al. (14 ,  and Ogata et  al. (15) included 
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1658 AIHARA ET AL. 

TABLE 1 
Mass Balance Equations for Chemical Species Involved 

XNA = "a'] + [NaCO;] + [NaHCOI] + [NaOH] + [NaCI] 
XK = [K']  + [KCI] 
ZCO, = [CO<-] + [HCO;] + [H,CO,] + [NaCO;] + [NaHCO,] 

ZUO, = [UO;+] + [ U 0 2 0 H + ]  + [U02(OH)L] t [UO?(OH);] 

+ jUO,Cl+] + [UO,CL] + [UOzCl;] 
= [Cl-] + [HCI] + [NaCI] + [KCI] t [UO,Cl*) 

+ [UOZCO,] + 2[u0,(Co3); ] + 3[uo?(co,):-] 

+ [UO,CO,] + [uo2(co,);-] + [uo2(co,):-] 

+ 2[U01C1:] + 3[UO2CI;] 
X I  

a hydroxyl complex UO,(OH);, while Langmuir (16) and Saito et al. (17) 
neglected it. In the present calculation, all possible species are considered. 
The stoichiometric stability constant, K ,  is defined as 

where the brackets indicate the molality of the species. The limiting stability 
constant at I ,  = 0, K * ,  is defined as 

The activity coefficient of the i-component at 25"C, yi, is given by the 
following equations (28): 

loglo yi = -(0.5095~: <)/(l + 0 . 3 2 8 4 ~ ~  <) + 0.0411, (4) 

where z i  is the charge number, mi is the concentration in the unit of 
mol/kg, and I ,  is the ionic strength in mol/kg. The distance of closest ap- 
proach of the ion, ui, expressed in units of A, is assumed as 9 for H + ;  
4.5 for Na+, CO:+, HCO,, and NaC03; 4 for UO,(CO,):-, 
U02(C03):-, and UO:'; 3.5 for OH-, U 0 2 0 H + ,  UO2(OH),, 
UO2Cl+, and U0,Cl;; and 3 for K+ and C1- (17). The dissociation 
constant for water (seawater), K,, is 10-'3.2 (19). The stability constant 
of UO,(CO,):- is critical in the calculation but is debatable. In the present 
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TABLE 2 
Stability Constants for I,. = 0 

Reaction log,,, K *  Ref. 

( I )  Na' + CO5- = NaCO; 
(2) Na' + HCO; = NaHCO, 
(3) Na' + OH'  = NaOH 
(4) Na' + CI- = NaCl 
(5) K' t CI- = KCI 

(7) H' + C O  
(8) H' + CI 
(9) UO;+ + H,O = U02(OH)+ + H' 

(10) UOi' + 2H,O = UO,(OH),(aq) + 2H' 
(11)  UO;* + 3H20  = UOZ(OH); + 3H' 
(12) UO;+ + COi- = U02(COl)(aq) 

(6) H' + HCOF H,CO, 
= HCO, 

= HCI 

(13) UO;' 
(14) UO;+ 

+ 2COi- = UO>(CO,);- 
+ 3COI- = UO2(COq)!- 

(15) UO?' + CI- = U0,Cl' 
(16) uo;' + 2CI- = U0?CII 
(17) UO;+ + 3CI- = UO~CIF 

I .27 
-0.25 
- 0.77 
- 0.23 
-0.21 

6.35 
10.33 
- 0.51 
-4.38 
- 11 .oo 
- 17.14 

10.24 
16.66 
22.46, 20.59 
- 0.10 
- 0.92 
- 2.60 

20 
20 
21 
24 
24 
22 
22 
24 
23 
23 
23 
23 
23 
23 
23 
23 
23 

study, therefore, two values (23),  which represent the range of data scat- 
tering, are used. The stability constants for the predominant ion pairs and 
complexes are calculated for any ionic strength from Eqs. (2)-(5) by using 
the values of K* listed in Table 2. 

COMPLEXATION RATE 
Figure 2 shows typical changes in the calix[6]arene-p-hexasulfonate 

(hereafter calix[6]arene) concentration due to complexation. Unreacted 
calix[6]arene decreases exponentially with elapsed time for all the condi- 
tions tested. Figure 3 reveals that the initial reaction rate, -d([L]I[L,,])I 
dt,  decreases with increasing carbonate ion. Comparison of symbols 0 and 

in Fig. 3 indicates that ionic strength does not affect the reaction rate. 
The data of Nagasaki et al. (11) are also shown in Fig. 3 .  

It is known that calix[6]arene-p-hexasulfonate forms a 1 : 1 complex with 
UO:+ in aqueous solution (6). Major species of uranyl ion in seawater are 
UO,(CO,)J-, UO,(OH)y, and U02(C03)$-, in the order of concentration 
(13) .  U02(C0,)t:- is predominant but is rather inactive in complexation, 
while the other uranyl species react at a faster rate (8). The possible 
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FIG. 2. Time evolution of unreacted calix[6]arene. [XUOz] = 8.18 x 10.‘ mol/L 

0 i 
10-5 I 

10” lo -*  lo-’  

concentration of CO$- [mol.L-ll 

FIG. 3. Dependence of -d([L]/[L&/d? on concentration of CO:-.  (0) [SUO,] = 8.2 X 

1 0 - 4  mol/L, I ,  = 0.01-0.3 rnoI/L; (A) [Zuo2] = 8.2 x lo-‘ mol/L, I ,  = 0.3 mol/L; (0) 
[XU02] = 4.1 x mol/L, I .  = 0.08-0.3 mol/L. The bold line shows the range of data 

of Nagasaki et al. (11). 
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pathways of the reaction between calix[6]arene (L) and uranyl ions are 
written as 

kt3  

Uranyl ions other than UO,(CO,)J- + L $ L.UOt+ (8) 

The formation rate of L-UOS' for the mechanism given by Eq. (7) is not 
influenced by the ligand concentration, and it obeys first-order kinetics 
with respect to UO,(CO,);-. Tabushi and Yoshizawa (8) found that the 
reaction rate coefficient, k f l ,  was 4.9 ss' at UO,(CO,)Q- = 0.1 mol/m', 
T = 298 K, and pH 9.5. This reaction proceeds much faster than the 
complexation with calix[6]arene, which indicates that the transition be- 
tween UO,(CO,)f- and U02(C03):- is not rate-determining, 

The reversible reactions, Eqs. (7) and (8), occur competitively. If Eq. 
(7) is controlling as reported by Tabushi and Yoshizawa (8) for 
tris(dithiocarbamate), the change in calix[6]arene concentration, [L], is 
expressed by 

- d[L]/dt = k,[UO,(CO,)j-][L] - k,[L~UO:+][CO:-] (9) 

where the concentration of L.UO,(CO,)'- is approximated by [L.UOt+] 
since the reaction from the intermediate L.UO,(CO,)%- to the complex 
L-UO:' is fast compared with the preceding reaction. Denoting the total 
ligand concentration as [Lo], we replace [L.UO:+] in Eq. (9) by [L,,] - [L] 
to get 

-dA[L]ldt = {kf2[U02(C03)!-] + k,,[CO:-]}A[L] (10) 

where 

The initial condition is 
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1662 AIHARA ET AL. 

Then we obtain 

The forward reaction rate is not dependent on the total C0:- concentration 
because most of the uranium exists as U0,(C03)i- under the present 
experimental conditions. Equation (12) indicates that the time evolution 
slope of A[L]/A[L,,,] must either be nearly constant or increase with in- 
creasing [COS-]. As shown in Fig. 3, however, the observed initial reaction 
rate decreased with increasing C0:- concentration. This implies that Eq. 
(7) is not a major reaction path in the present experiment. 

From Eq. (8), on the other hand, the overall complexation rate is ex- 
pressed by 

-d[L]/dt = k,,[2UO,,,,][L] - k,,[L-UOf+][CO:-] (13) 

where [2UOzact] represents the uranyl ions other than U0,(C03)i- ,  i.e., 
[XUO,] - [UO,(CO,):-]. The solution of Eq. (13) is obtained in the same 
manner as that of Eq. (8). 

where 

Since uranyl ions other than U02(C03)j'- are reactive to calix[6]arene, the 
reverse reaction kr3, is less significant. Then the reaction rate coefficient 
of Eq. (14) becomes nearly equal to kf3[CU02,,,]. An increase in carbonate 
ions brings a decrease in [CU02,,t]. 

Figures 4 and 5 show that - d([L]/[L,])/dt cannot be correlated with the 
concentration of UO,(CO,):-, K *  being assigned values of 102').5' and 10".", 
respectively. Tamon et al. (14)  correlated the adsorption equilibrium of 
uranium with amidoxime resin against [U02C03]. However, U02C03  is 
only a minor species among uranyl ions, and it cannot be a component 
that controls the reaction rate. 

Figure 6 shows the relationship between -d([L]/[L,,])/dt and the con- 
centration of U02(C03)$-.  The correlation is still unsatisfactory because 
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FIG. 5. Dependence of -d([L]l[L,,])ldf on concentration of UOz(CO,):-. K *  for Reaction 

(14) in Table 2 = Keys are the same as in Fig. 4. 
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0 
a 

0 1 

0 

Concentration of U O ~ ( C O ~ ) ~ ~ -  [moi.L-l ]  

FIG. 6. Relationship between - d([L]/[L,,])/dt and concentration of UO,(CO,)i-. Keys are 
the same as in Fig. 4. 

the concentration of U02(C03)t- is 2-4 orders lower than that of 
U02(OH)y in the range of [CUO,,,,] > mol/L. The complexation 
rate between calix[6]arene and uranyl ions is better correlated with the 
total concentration of uranyl ions other than U02(C03);-, as shown in Fig. 
7. The correlation with K *  = 10”’.sy gives nearly the same accuracy as is 
shown in Fig. 7. The major component is U02(OH); in both cases. These 
results imply that Eq. (8) is the main route for complexation between 
calix[6]arene-p-hexasulfonate and uranyl ion. From Fig. 7, the formation 
rate of the calix[6]arene-uranium complex, L-UO;’, is expressed by 

The exponent of [CUOZact] is smaller than unity in the range of extremely 
low XJOZac, concentrations where the participation of Eq. (7) is not neg- 
ligible. 

Based on the above results, we calculated the recovery rate of uranium 
with the calixarene-immobilized adsorbent. Assuming that the calixarene 
concentration in the dry adsorbent is 20 wt% and that the density of the 
swollen adsorbent is 1 Mg/m3, the molar concentration of calixarene in a 
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I 0-* lo- '  I O - ~  1 0 - ~  1 0 - ~  l o v 3  

Concentration of [mol -L- l ]  

FIG. 7. Correlation of - d ( [ L ] / [ L , , ] ) / d t  with concentration of XU02, ,c , .  Keys are  the same as 
in Fig. 4. 

unit volume of the swollen adsorbent is 1.6 x lo-' mol/L. In seawater, 
(2U02act] is roughly 2 x mollL (13), and d[L.UO:+]/dt is estimated 
to be 2 x L-rno1-l.s-l from Fig. 7. Then the recovery rate of uranium 
is estimated as 9 g per kg-resin per day. This value is higher than that of 
amidoxime fiber, 0.12-0.35 g per kg-fiber per day ( 5 ) .  To recover uranium 
from seawater, however, calixarene must be immobilized; for instance, on 
a macroporous polystyrene-divinylbenzene copolymer via a spacer such as 
polyethyleneimine. The complexation rate of the immobilized adsorbent 
will be much slower than that of the monomer, as seen with amidoxime 
resin ( 4 ) .  This problem is left to future work. 

CONCLUSION 
The kinetics of complexation between calix[6]arene-p-hexasulfonate and 

uranyl ion were studied over a wide range of carbonate ion concentrations. 
The observed reaction rate decreased with increasing carbonate ion con- 
centration, and was well correlated by means of the concentration of uranyl 
ions other than UO,(CO,)J-. Reaction (9) was the rate-controlling step, 
the rate of which is correlated in Fig. 7. 
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